Fatigue failure of osteocyte cellular processes: implications for the repair of bone.
نویسندگان
چکیده
The physical effects of fatigue failure caused by cyclic strain are important and for most materials well understood. However, nothing is known about this mode of failure in living cells. We developed a novel method that allowed us to apply controlled levels of cyclic displacement to networks of osteocytes in bone. We showed that under cyclic loading, fatigue failure takes place in the dendritic processes of osteocytes at cyclic strain levels as low as one tenth of the strain needed for instantaneous rupture. The number of cycles to failure was inversely correlated with the strain level. Further experiments demonstrated that these failures were not artefacts of our methods of sample preparation and testing, and that fatigue failure of cell processes also occurs in vivo. This work is significant as it is the first time it has been possible to conduct fatigue testing on cellular material of any kind. Many types of cells experience repetitive loading which may cause failure or damage requiring repair. It is clinically important to determine how cyclic strain affects cells and how they respond in order to gain a deeper understanding of the physiological processes stimulated in this manner. The more we understand about the natural repair process in bone the more targeted the intervention methods may become if disruption of the repair process occurred. Our results will help to understand how the osteocyte cell network is disrupted in the vicinity of matrix damage, a crucial step in bone remodelling.
منابع مشابه
Microdamage Repair and Remodeling Requires Mechanical Loading
Bone remodeling is necessary to avoid microdamage accumulation, which could lead to whole-bone failure. Previous studies have shown that this bone-repair mechanism is triggered by osteocyte apoptosis. Through the use of a rodent hindlimb suspension model and tibial four-point bending model, the effects of disuse on microdamage remodeling was examined. At day 0, male rats were assigned to one of...
متن کاملDecrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone.
Aging decreases the human femur's fatigue resistance, impact energy absorption, and the ability to withstand load. Changes in the osteocyte distribution and in their elemental composition might be involved in age-related bone impairment. To address this question, we carried out a histomorphometric assessment of the osteocyte lacunar distribution in the periosteal and endosteal human femoral cor...
متن کاملIn vitro and in vivo study on osteocyte-specific mechanical signaling pathways.
Mechanical loading of bone results in various osteogenic stimuli, including new bone formation as well as repair. In this process, osteocytes which are derived from osteoblasts are critical for communicating and sending signals to other bone cells through gap junctions with their dendritic processes to initiate bone remodeling. It is speculated that the history of weight bearing affects long-te...
متن کاملBone microdamage and cell apoptosis.
Accumulation of microdamage in bone leads to the reduced strength of our skeleton. In health, bone adapts to the prevailing mechanical needs of the organism and is also capable of self-repair, sensing, removing and replacing damaged or mechanically insufficient volumes of bone. In disease and old age these characteristics are reduced. In order to undertake both of the processes of functional ad...
متن کاملFatigue Life of Repaired Welded Tubular Joints
In this study, the effect of repair on fatigue life of tubular joints is investigated. Six cracked specimens precedently subjected to fatigue loading undergone to weld repair. Two of those specimens were shot peened before primary fatigue loading. It is shown that repair gives rise to about 150% increase in fatigue life for original specimens while the increase of fatigue life for shot-peened ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European cells & materials
دوره 27 شماره
صفحات -
تاریخ انتشار 2014